Spatial integration (for AP Physics C Mechanics)

Vector line integral

Mass density

Integrals over distributions

Neatly and graphically represent situation(s)

1. Draw a large diagram of the path along which the integral is to be computed.

- 1. Draw a large diagram of the distribution to be integrated over.
- 2. Draw a reference position, axis of rotation, and/or point of observation *P*.

Graphically represent quantities and their relationships

2./3. Check whether the physical system exhibits symmetry(ies) permitting use of simplifying coordinate system(s).

- 3. If needed, draw a signed coordinate system with a clear origin.
- 4. Draw a differential displacement $d\vec{\ell}$. Label this differential displacement with an expression for its length $d\ell$ (possibly in terms of a coordinate system).
- 5. Draw the vector $\vec{\mathbf{F}}$ originating from the tail of the displacement vector.
- 6. Label the vector $\vec{\mathbf{F}}$ with an expression for its magnitude $|\vec{\mathbf{F}}|$ (possibly in terms of a coordinate system).
- 7. Draw the angle θ between the vector $\vec{\mathbf{F}}$ and $d\vec{\boldsymbol{\ell}}$.

- 4. If needed, draw a signed coordinate system with a clear origin.
- 5. Draw a differential element $\mathrm{d}X$ of the distribution, labeled in terms of a density coefficient expression and a differential geometric element (examples include $\mathrm{d}M = \lambda \ \mathrm{d}\ell$, $\mathrm{d}M = \sigma \ \mathrm{d}A$, $\mathrm{d}M = \rho \ \mathrm{d}V$, etc).
- 6. Draw and label the displacement vector $\vec{\mathbf{r}}$ from the reference position or axis of rotation to the differential element dX and/or from the differential element dX to the point of observation P.

Identify relevant allowed starting point (in)equation(s)

$$Y = \int_{\vec{\mathbf{r}} = \vec{\mathbf{r}}_{i}}^{\vec{\mathbf{r}} = \vec{\mathbf{r}}_{f}} \vec{\mathbf{F}} \cdot d\vec{\boldsymbol{\ell}} = \int_{\vec{\mathbf{r}} = \vec{\mathbf{r}}_{i}}^{\vec{\mathbf{r}} = \vec{\mathbf{r}}_{f}} (|\vec{\mathbf{F}}| \cos \theta) d\ell$$

8. Use geometry to find a formula or numerical value for the measure of the angle θ .

 $\mathrm{d} M = \rho \; \mathrm{d} V$ For a uniform mass density, $\frac{\mathrm{d}^M}{M} = \frac{\mathrm{d} V}{V}$.

$$Y = \int_X f(\vec{\mathbf{r}}) \, \mathrm{d}X$$

Y – output at observation point

 $f(\mathbf{r})$ – expression that depends on spatial relationship between differential element of distribution and observation point

dX – differential portion of distribution

7. Use geometry to find a formula or numerical value for the length r of the displacement $\vec{\mathbf{r}}$.

Use <u>n</u>umbered steps to show REASoNing

Communicate